自1750年以来,由人类活动产生的温室气体浓度增加是导致全球气候变暖的主要原因[1, 2],因此,减少温室气体排放对控制全球气候变暖具有重要意义。中国是世界上最大的发展中国家,也是全球第二大经济体。尽管中国人均累积温室气体排放量(157吨CO2/人)远低于世界平均水平(210吨CO2/人),但我国政府自愿承担《京都议定书》规定的温室气体减排“共同而有区别的责任”,并于2007年发布《中国应对气候变化国家方案》,提出到2010年中国应对气候变化的具体目标、基本原则、重点领域及其政策措施。2020年,国家主席习近平在第75届联合国大会一般性辩论上向全世界庄严承诺,中国将力争2030年前实现碳达峰、2060年前实现碳中和。然而,我国“双碳”行动面临巨大挑战,实现碳中和将成为引领我国中长期可持续发展的战略目标,同时也是推动我国科技创新和社会变革的重要举措。
根据生态环境部发布的《中华人民共和国气候变化第二次两年更新报告》 ①显示(图 1),2014年中国温室气体排放总量为111.86×108吨CO2当量(CO2-eq)。其中,非CO2温室气体排放为20.62×108吨CO2-eq,占温室气体排放总量的18.4%;农业活动非CO2温室气体(主要指CH4和N2O)排放为8.30×108吨CO2-eq,而农田CH4和N2O直接排放总量为4.75×108吨CO2-eq,占全国农业活动温室气体排放量的57.3%,占全球农田非CO2温室气体总排放量的26.8%[1, 3]。农田是保障国家粮食安全和国计民生的基石,亦是长期稳定的温室气体排放源;随着人口的增长,未来粮食增加与温室气体减排的矛盾将日益加剧。尽管农田非CO2温室气体直接排放量目前仅占全国温室气体排放总量的4.3%(图 1),但随着我国2030年碳达峰后,化石能源逐步被清洁能源所替代,CO2排放量逐步减少,未来农田直接排放的CH4和N2O占温室气体总量的比例将会越来越大。不难预见,我国农田非CO2温室气体减排的重要性将日渐凸显,其减排工作事关我国“双碳”目标是否能够顺利实现,刻不容缓。
![]() |
图 1 2014年中国温室气体排放总量及其构成 Figure 1 Total greenhouse gas emissions and their compositions in China of 2014 |
① 中华人民共和国气候变化第二次两年更新报告. [2022-05-19]. http://big5.mee.gov.cn/gate/big5/www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf.
农田因受人为管理影响,其排放的CH4和N2O相对更容易发生变化,故采取适当的调控措施可达到减少排放的目的。例如,2000年全球稻田CH4排放量为25.6×106吨,若将所有持续淹水稻田在水稻生长季至少排水1次,估计每年可降低CH4排放4.1×106吨;若将秸秆从水稻生长季提前至非水稻生长季还田,则能减少4.1×106吨的CH4排放[4];如将我国氮肥利用率提高至40%,全国农田N2O排放量每年可减少44 ×106吨CO2-eq[5]。然而,现有减排措施的转化应用与推广示范并未得到足够重视,导致巨大的理论减排潜力无法变为实际减排能力落地坐实。为此,本文总结了近30年来我国农田非CO2温室气体减排的研究进展,指出了当前减排工作所面临的问题,并提出了可能行之有效的技术和政策建议。
1 研究进展农田非CO2温室气体减排的实质是CH4和N2O的综合减排。稻田CH4排放和N2O排放存在此消彼长的关系[6-8],而CH4排放对综合温室效应的贡献占主导地位[4, 5],因此在稻田生态系统中,控排CH4是关键;旱地以N2O排放为主,且几乎不排放甚至可能吸收CH4[5, 9],故旱地非CO2温室气体减排的重点是减少N2O排放。此外,任何减排措施均不能以牺牲农作物产量为代价,需要根据农田生态系统的实际情况,建立科学合理的减排技术评价指标,以期为农田非CO2温室气体减排技术的研发与应用提供科学依据。
1.1 CH4减排 1.1.1 稻田CH4减排的主要技术措施水分管理和有机物质施用被认为是稻田CH4排放的主控因子[4, 10]。排水较持续淹水可显著减少稻田CH4排放[11-14]。据估计,如将我国常年淹水稻田在非水稻生长季节排水落干,不仅可减少当季0.58 ×106吨/年的CH4排放量,还能显著降低后续水稻生长季CH4排放约1.31 ×106吨/年,促使全国稻田CH4排放量减少35%[15]。于非水稻生长季实施有机物质还田措施较水稻生长季可明显降低CH4排放的增幅[16-18];将有机物质钝化改性,如制成生物炭,或前期发酵腐化,也会大幅削弱CH4排放的促进效应[19-21]。
种植高产低排水稻是减少CH4排放的有效途径之一。 33个水稻品种的盆栽试验结果表明[22],在有机碳含量高的稻田土壤中,累积CH4排放量与水稻产量显著负相关,所有水稻平均生物量增加10%,但CH4排放量减少10.3%;种植节水抗旱稻较传统水稻可有效减少CH4排放,且能够在干旱年份保持水稻产量[23]。此外,稻田少免耕有利于减少CH4排放。日本北部稻田观测研究发现[24],与翻耕相比,免耕减少水稻生长季CH4排放量43%;中国大量田间观测结果也证实,免耕较翻耕可大幅降低CH4排放量[25-28]。
1.1.2 在保证水稻产量基础上一些典型的综合减排技术模式上述减排措施总体上操作简单、效果良好,但都相对比较单一和独立,且存在地域上的差异性和局限性,并不适于所有类型稻田。这是因为减排的同时可能会降低水稻产量,不利于技术成果的推广应用,需要研发针对性强的减排技术模式。只有根据不同稻田生态系统的实际情况,区别对待、因地制宜,才能提出科学合理且易于实践的减排对策,从而最大限度地挖掘其减排潜力。例如,主要分布于我国南方山地丘陵区的常年淹水稻田在稻季和冬季均有大量CH4排放[29, 30],减排潜力巨大[15]。排水是减少CH4排放的关键措施,但该类稻田排水容易遭受季节性干旱,从而影响水稻正常生长,可能导致减产。而水稻覆膜栽培较传统淹水栽培,改变了水肥管理习惯,不仅可显著减少水稻灌溉用水、降低CH4和N2O总排放的全球增温潜势(global warming potential,GWP),还提高水稻产量[6];尽管明显增加了N2O排放,但结合硝化抑制剂和控释肥施用能消减N2O排放增量,从而进一步降低GWP[31]。
南方双季稻区实施排水且秸秆翻耕还田措施可降低全年稻田CH4排放量。我国南方双季稻区晚稻收割后稻田抛荒现象十分普遍,且非水稻生长季降雨较多,温度相对较高,导致其CH4排放量大[32, 33]。通过实施排水且秸秆翻耕还田措施,将减少田面积水,降低土壤水分含量,有利于秸秆在土壤中好氧降解,可供后续水稻生长季微生物利用的残留秸秆则明显减少,从而可能降低全年稻田CH4排放量[16, 18]。江西鹰潭连续5年的田间试验结果表明[34],非水稻生长季排水和秸秆翻耕还田均显著减少CH4排放、一定程度增加N2O排放,于是大幅降低GWP,且排水结合翻耕进一步降低GWP达9.9%—19.5%。
水稻与其他作物轮作可有效降低CH4和N2O排放。在稻麦轮作系统中,排水情况下施用尿素的同时配施硝化抑制剂和脲酶抑制剂或改施控释肥,既可不同程度上减少CH4排放,又能明显降低N2O排放量,且结合分蘖肥施用的N2O减排效果最佳[35-38];改稻麦轮作为稻蚕豆轮作后,合理减氮与秸秆好氧发酵施用能同时急剧减少CH4和N2O排放,且提高水稻平均产量达5.2%[39];通过集成旱耕旱整、控水增氧、增密调氮等耕作栽培技术,不仅可实现水稻平均增产5%,还能大幅降低CH4排放30% 以上,尽管N2O排放量会有所增加,但总体GWP显著下降[40, 41]。
1.2 N2O减排 1.2.1 合理施肥是减少N2O排放的关键氮肥为土壤N2O的产生提供基质,是影响农田N2O排放最重要的因素,故合理施肥是减少N2O排放的关键。合理施肥是指合理的施肥量(right amount)、正确的施肥时期(right time)、正确的施肥方法(right place)及正确的肥料品种(right type),国际上称为“ 4R技术” [42-44]。
(1)合理的施肥量。确定合理施氮量是N2O减排最直接有效的农田管理措施。相对于传统施氮量,优化施氮可以降低37% 的氮素投入、42% 的N2O排放量,同时保持目标产量[42]。
(2)正确的施肥时期。指根据作物需肥阶段施用肥料,具体表现为增加施肥次数或减少基肥施用比例。土壤N2O及其他活性氮损失主要发生在作物根系对养分吸收利用有限的初期[45],减少基肥(氮肥)施用比例和增加氮肥施用次数可以增加水稻生长后期对氮素的吸收,提高氮素利用率,显著降低包括N2O在内的活性氮损失[46]。整合分析发现[47],正确的施肥比例和次数可显著提高我国主要粮食作物氮肥利用率8%—30%,同时降低N2O等活性氮损失5.4%— 61.5%。
(3)正确的施肥方法。不同施肥方法对N2O减排的研究还较少,从减少氨挥发损失和提高作物氮素利用的角度考虑,氮肥深施是施肥的基本原则。湖北连续2年的结果表明[48],尿素深施显著降低覆膜稻田N2O排放量47%。相较于传统的氮肥表施,氮肥深施能显著提高我国主粮作物产量6.9%,提高化学氮肥利用率28.5%,显著降低土壤N2O排放14.6%[47]。氮肥撒施后翻耕和条施后覆土较撒施后灌水,也可显著减少N2O排放[49]。
(4)正确的肥料品种。选择正确的肥料品种可以对农田N2O减排起到重要作用:控释肥施用可提高氮素利用率、显著减少N2O排放量[50, 51],施用抑制剂也是减少N2O排放的有效措施[52-54]。整合分析结果表明,脲酶抑制剂分别显著提高我国主粮作物产量和氮肥利用率7.1% 和31.3%,并降低土壤N2O排放27.8%[47];硝化抑制剂显著减少土壤N2O排放20%,同时分别提高作物吸氮量和产量达58% 和9%[55]。此外,生物炭对农田N2O排放具有较好的减排效果[56]。
1.2.2 其他农艺措施也可减少N2O排放除合理施肥外,采取其他农艺措施也可减少农田N2O排放。譬如,小麦播种前,稻田免耕较传统旋耕可大幅降低我国太湖流域稻麦轮作系统N2O排放430 kg CO2-eq /(hm2·a)[57];稻秆还田显著减少稻麦轮作系统N2O排放41.2%[58];旱作农业的大量、少次浇水也可减少农田N2O的排放[59]。
1.3 农田非CO2温室气体减排评价指标早期农田非CO2温室气体减排研究主要侧重于CH4或N2O减排效果,很少从农田生态系统的角度考虑与减排无直接关联的作物产量、土壤有机碳含量等指标[60-63]。随着人们对粮食安全与全球气候变化等问题认识的提升,越来越多的研究逐渐将产量和土壤固碳纳入到减排技术的评价指标体系当中,通常以单位产量的GWP(包括温室气体排放的GWP、有机碳固存、产量)来综合评价其减排效果[64-69]。李建政等[70]汇总了当前可作为农田减排技术评价的指标(包括土壤固碳、CH4排放、N2O排放、投入排放、产量),提出了以温室气体排放强度(单位产量下的温室气体排放总量)作为综合指标,科学系统地评价农田减排技术的温室效应,已得到广泛认可。
2 存在的问题当前,我国农田非CO2温室气体的减排工作几乎仅限于科研院所和高校的研究探索层面,政府主管部门并未出台相关政策文件对减排工作给予支持,加之教育宣传力度不够,使得人们对农田非CO2温室气体减排的意识淡薄,且无相关激励机制,导致现有关键减排技术难以付诸实践并推广应用。总结而言,我国农田非CO2温室气体减排工作主要面临4个方面的问题。
2.1 缺乏长期稳定、连续有效的原位观测平台我国有关农田生态系统的温室气体排放观测研究始于20世纪80年代[71],随着1992年通过的《联合国气候变化框架公约》于1994年3月21日起对中国生效,相关工作如雨后春笋一般迅速在全国各地展开。笔者根据中国知网和中国科学院文献情报中心的检索结果发现(图 2):我国已进行了覆盖全国6大分区、85种作物、148个种植模式和545个监测点的温室气体排放通量原位观测;每年观测点数在2014年达到峰值,随后急剧减少;绝大部分观测点持续时间较短,5年以上的只有33个。这说明我国田间原位观测点由于科研项目的实际需求具有很大的波动性和不确定性,一旦项目结题或试验结束,观测点可能随之弃用,导致我国相对缺乏稳定且长期有效的原位监测平台和通量观测数据。
![]() |
图 2 中国农田非CO2温室气体排放观测点的空间分布及其持续时间 Figure 2 Spatial distribution and duration of non-CO2 greenhouse gas emission observation sites in China (a)空间分布;(b)每年观测点数;(c)各观测年限的点数。数据来源于中国知网和中国科学院文献情报中心;检索主题词/文摘为:农田温室气体排放,或稻田CH4/甲烷排放,或农田N2O/氧化亚氮排放,检索截止日期为2021年10月16日 (a) Spatial distribution; (b) number of observations per year; (c) number of sites for each observation period. Data were collected from CNKI and National Science Library, CAS. Keywords/abstracts were: greenhouse gas emissions from farmland, or CH4/methane emissions from paddy fields, or N2O/nitrous oxide emissions from farmland. The literature search deadline was October 16, 2021 |
中国作为农业生产大国,全面、系统的通量观测数据对准确评估全国农田温室气体排放总量和有力支持我国环境外交尤为重要。20世纪80年代我国田间原位监测点还很少(图 2),国外学者基于这一时期四川省和浙江省的持续淹水稻田CH4排放观测数据,分别推算出中国稻田CH4排放量为30×106吨/年[72]和18—28×106吨/年[73]。随着监测点的逐步增多,通过分析大量观测数据发现,仅根据局部持续淹水稻田估算我国稻田CH4排放总量,结果缺乏代表性,且存在很大的不确定性和严重高估现象。譬如,Yan等[74]2003年利用全国五大水稻生长区域不同水肥管理条件下23个采样点的共204个测量数据,估算出中国稻田CH4排放总量为7.67 ×106吨/年,远低于早期报道值,为我国在国际上履行农田温室气体减排义务谈判争取了话语权。
2.2 基础研究尚有不足,妨碍了方法技术创新有效减少排放是农田温室气体研究的重要目标之一,目前已形成了四大主要减排技术体系(图 3),其中,优化水肥管理被视为最轻简、最行之有效的减排措施,合计发文量占总量的94.2%。不同减排技术间往往关联密切,若在主导技术基础上辅以其他措施,其减排潜力可能更大。例如,Yan等[4]评估了全球稻田CH4排放量及其减排潜力,发现水稻生长季稻田至少排水1次,再结合非水稻生长季秸秆还田,可减少全球稻田CH4排放达7.6×106吨/年,较两者单独实施每年可多减排3.5×106吨的CH4。稻麦轮作系统连续2年的田间观测结果表明[39],优化轮作制度下氮肥合理减量与秸秆好氧发酵后还田较传统农业管理措施,显著降低了温室气体和活性氮排放造成的总环境损失42%,并提高净经济收益23%。这说明,多技术耦合集成具有丰产减排增效等多重功效,但至今仍相对缺乏综合减排技术及其机理机制的研究报道。
![]() |
图 3 全球农田温室气体主要减排技术体系(a)及其相应的论文数量(b) Figure 3 Major technology systems for reducing greenhouse gas emissions from global farmland (a) and the number of corresponding published papers (b) 文献来源于Web of Science,检索主题词/文摘为:农田甲烷/CH4排放和氧化亚氮/N2O排放+ 水分管理,或+ 肥料施用,或+ 水稻品种,或+ 翻耕;截止日期为2021年10月16日;图a中蓝色箭头表示彼此间存在关联 Data were collected from Web of Science, and keywords/abstracts were: field/farmland/ cropland and methane/CH4 and nitrous oxide/N2O and emission/flux + water/moisture management or drainage or intermittent irrigation, or + organic matter/manure or straw/stubble/biochar application/incorporation or N/nitrogen or inhibitor or control release fertilization, or + cultivar/variety, or + till/no-till or tillage/no-tillage. The literature search deadline was October 16, 2021; The dotted blue lines indicate that they are related to each other |
传统人工插秧下种植高产低排水稻可降低CH4排放,但有些品种可能并不适合抛秧或直播等栽培技术,它们较传统的人工插秧不仅会增加CH4排放,还导致水稻减产[75, 76]。我国水稻生产正处于重大转型期,需要从“追求单季超高产”向“提高系统总产量”转变、种植模式创新、栽培技术轻简化和机械化以配合新种植模式、及品种改良以适应轻简化和机械化栽培[77]。不系统研究传统高产低排水稻品种如何更好地适应转型时期栽培技术的轻简化和机械化,必将妨碍水稻丰产和温室气体减排的可持续发展。此外,高产低排水稻的生理特性及遗传机制尚不明确,如何改良品种以实现丰产与减排协同的研究还鲜有文献报道。从图 3也可看出,目前有关品种筛选方面的减排研究仅占全球减排总发文数量的2.1%,尚有很大发展潜力与空间。
2.3 立法教育宣传不够,大众减排意识淡薄自从《联合国气候变化框架公约》对中国生效以后,我国政府积极采取了一系列政策和措施以应对全球气候变化,并于2007—2022年先后7次提出了农田非CO2温室气体的减控措施(表 1)。但这些措施均未形成具体的减排行动方案加以施行,2021年发布的《碳排放权交易管理办法(试行)》也未明确将农田纳入碳排放权交易的主体范围。此外,尽管国内一些如《农业法》《清洁生产促进法》《环境保护法》《循环经济促进法》《土地管理法》等法律文件涉及低碳农业发展,但主要侧重于农业绿色发展过程中的清洁能源利用、有机肥和农药的使用标准及土地集约化进程中先进技术的运用等方面,且都只是倡议性的,对减排主体不具有强制性和约束力[78, 79]。加之近40年来,国家以经济建设为中心,在大力发展农业生产过程中以提高农作物产量为最主要目标,忽视了对农业低碳发展和高碳管控的教育与宣传。更为关键的是,当前我国农作物主要从业者受教育程度普遍较低,难以认识到农田减排的重要性和紧迫性。以上诸多原因造成大众的减排意识淡薄,从而无法以主人翁的身份主动参与到农田非CO2温室气体减排的实际工作当中来。
![]() |
2007年国务院印发的《中国应对气候变化国家方案》中明确要求控制农田CH4排放,减少农田N2O排放,但由于我国农田非CO2温室气体减排缺乏长期有效的监测与应用,导致关键技术的适用性和经济性不强,成果转化困难。虽然国务院于2016年相继印发了《实施〈中华人民共和国促进科技成果转化法〉若干规定》和《促进科技成果转移转化行动方案》,明确提出要加强科技成果转移转化,但总体过于笼统,且无专门针对农田碳减排成果场地熟化及产业转化的配套政策与文件,从而制约了减排成果的推广应用。此外,在农业生产过程中,如要统筹兼顾产量和减排,很可能会增加经营主体的投入成本和减产风险。即便有比较健全的法律法规约束,但缺乏科学有效的生态补偿机制,经营主体也不愿自主承担减产损失来开展减排工作。最后,目前尚无相关监管和推广部门,且缺少推广激励机制,使得我国农田非CO2温室气体减排技术示范推广少,妨碍了农业碳减排工作的顺利推进。
3 对策建议(1)建立监测长效运维机制。 ①我国政府部门应加大资金投入,有针对性的长期扶持相关科研院所和高校,或成立专门的运维部门,于我国典型农田生态系统的粮食主产区建立稳定的、仪器设备优良的原位自动化观测平台。各观测平台的建立须遵循“特色鲜明、代表性强”原则,即在我国重要农作区有针对性地设置通量观测试验。进一步通过多平台交叉联合,消除区域气候环境产生的影响,从而获得不同农作区的平均排放数据。②基于互联网技术,搭建我国农田非CO2温室气体观测网络与大数据处理平台和服务中心,对全国所有观测平台获得的数据进行实时汇总分析,以期为国家提供长期而稳定的监测数据。③建立政府统一领导、多部门分工协作和农作物经营主体共同参与的协调工作机制,实现减排工作“自上到下、由点到面、从区域到全国”稳步推进。
(2)突破新方法、新技术、新品种。①土-水-植-气界面间的碳氮生物地球化学循环与农田温室气体排放关系密切。传统研究往往忽视了土壤表层上微生物聚集体的存在,如稻田土壤表层的周丛生物膜或旱地土壤表层的生物结皮,这些微生物聚集体可通过同化吸收/氧化、硝化、反硝化、水解等过程影响碳氮的转化和运移过程[80, 81],进而可能影响温室气体的排放[82]。②尽管以往也有肥料-土壤-作物系统的综合管理减排技术[83],但关于水肥-土壤-作物-微生物四位一体协同的减排技术及其机理机制研究尚待突破。③高产低排水稻如何更好地适应轻简化和机械化栽培是未来我国水稻低碳化种植的重要发展方向[77]。当前亟待创建新方法、新技术来选育和改良新品种,以实现栽培技术轻简化和机械化情景下的丰产减排协同。
(3)加强立法教育宣传,提升大众减排意识。当前,我国农田非CO2温室气体减排尚处于“缺法规、缺监管、缺教育、缺宣传”状态,使得人民大众的减排意识还非常淡薄,减排的积极性和主动性严重不足。而且农田非CO2温室气体减排涉及多类各级管理部门、农业资料生产企业、农业生产经营主体,不同主体具有不同需求和目标,增加了减排工作的难度。借鉴欧、美、日、韩、澳等发达国家和地区低碳农业发展的实践经验[78, 84-86],并结合中国的发展实情,建议我国政府在保证粮食安全前提下开展3个方面工作:①将农田纳入碳排放权交易范围,并颁布相关法律法规,细化奖惩办法,为减排主体提供必要的法律约束力;②健全相应的管理体系和监督考核机制,具化减排方案及操作规程,保证减排措施的顺利实施与执行;③加大教育宣传力度,举办专题培训班,增强减排主体对减排工作重要性、紧迫性和长期性的认识,切实提升人们的减排意识,促使其减排观念由“引导减排”到“自愿减排”转变。
(4)完善成果激励机制,加强减排技术示范推广。 ①我国政府需要加强科技成果转化和应用引导,依托高等院校或科研机构大力支持农业资料生产企业建立自己的研发机构,将高产低排品种改良、新型肥料及设备制备、农田远程管理终端研发等技术服务物化为产品,通过市场主导和调节,加速推进科技成果的产品化和市场化。②在粮食高产稳产基础上建立完善的生态补偿激励机制,根据补偿主体多元化特点,构建补偿资金来源和补偿方式多样化的减排补偿机制,促进技术成果转化应用。主要包括:加强国际合作与交流,借鉴国外先进激励机制和成果经验,助力完善我国减排补偿机制;制定并实施农业减排补贴政策,实行减免税政策;加大财政投入和补贴力度,奖励和补偿减排主体;利用市场价格杠杆,确定科学合理的补偿标准,实现补偿机制的政策化和标准化。③建立成果推广激励机制,打通减排技术成果示范“最后一公里”。通过加强减排技术的推广与示范,突破瓶颈,促使理论上的减排潜力转化为真正意义上的减排能力。
[1] |
Intergovernmental Panel on Climate Change. The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
|
[2] |
Lynas M, Houlton B Z, Perry S. Greater than 99% consensus on human caused climate change in the peer-reviewed scientific literature. Environmental Research Letters, 2021, 16(11): 114005. DOI:10.1088/1748-9326/ac2966 |
[3] |
Tian H Q, Xu R T, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586: 248-256. DOI:10.1038/s41586-020-2780-0 |
[4] |
Yan X Y, Akiyama H, Yagi K, et al. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Global Biogeochemical Cycles, 2009, 23(2): GB2002. |
[5] |
Zhang W, Yu Y Q, Li T T, et al. Net greenhouse gas balance in China's Croplands over the last three decades and its mitigation potential. Environmental Science & Technology, 2014, 48(5): 2589-2597. |
[6] |
Zhang G B, Yang Y T, Huang Q, et al. Reducing yield-scaled global warming potential and water use by rice plastic film mulching in a winter flooded paddy field. European Journal of Agronomy, 2020, 114: 126007. DOI:10.1016/j.eja.2020.126007 |
[7] |
Song K F, Zhang G B, Yu H Y, et al. Methane and nitrous oxide emissions from a ratoon paddy field in Sichuan Province, China. European Journal of Soil Science, 2021, 72(3): 1478-1491. DOI:10.1111/ejss.13066 |
[8] |
Ma J, Li X L, Xu H, et al. Effects of nitrogen fertiliser and wheat straw application on CH4 and N2O emissions from a paddy rice field. Australian Journal of Soil Research, 2007, 45(5): 359-367. DOI:10.1071/SR07039 |
[9] |
Liu S W, Zheng Y J, Ma R Y, et al. Increased soil release of greenhouse gases shrinks terrestrial carbon uptake enhancement under warming. Global Change Biology, 2020, 26(8): 4601-4613. DOI:10.1111/gcb.15156 |
[10] |
Yan X Y, Yagi K, Akiyama H, et al. Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology, 2005, 11(7): 1131-1141. DOI:10.1111/j.1365-2486.2005.00976.x |
[11] |
Zhang G B, Zhang X Y, Ma J, et al. Effect of drainage in the fallow season on reduction of CH4 production and emission from permanently flooded rice fields. Nutrient Cycling in Agroecosystems, 2011, 89(1): 81-91. DOI:10.1007/s10705-010-9378-0 |
[12] |
Zhang G B, Ji Y, Ma J, et al. Case study on effects of water management and rice straw incorporation in rice fields on production, oxidation, and emission of methane during fallow and following rice seasons. Soil Research, 2011, 49(3): 238-246. DOI:10.1071/SR10117 |
[13] |
Zou J W, Huang Y, Jiang J Y, et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Global Biogeochemical Cycles, 2005, 19(2): GB2021. |
[14] |
Hussain S, Peng S B, Fahad S, et al. Rice management interventions to mitigate greenhouse gas emissions: A review. Environmental Science and Pollution Research International, 2015, 22(5): 3342-3360. DOI:10.1007/s11356-014-3760-4 |
[15] |
蔡祖聪, 徐华, 马静. 稻田生态系统CH4和N2O排放. 合肥: 中国科学技术大学出版社, 2009. Cai Z C, Xu H, Ma J. Paddy Ecosystem CH4 and N2O Emissions. Hefei: University of Science and Technology of China Press, 2009. (in Chinese) |
[16] |
Zhang G B, Zhang W X, Yu H Y, et al. Increase in CH4 emission due to weeds incorporation prior to rice transplanting in a rice-wheat rotation system. Atmospheric Environment, 2015, 116: 83-91. DOI:10.1016/j.atmosenv.2015.01.018 |
[17] |
Xu H, Cai Z C, Li X P, et al. Effect of antecedent soil water regime and rice straw application time on CH4 emission from rice cultivation. Australian Journal of Soil Research, 2000, 38(1): 1-12. DOI:10.1071/SR99026 |
[18] |
Watanabe A, Kimura M. Effect of rice straw application on CH4 emission from paddy fields. Soil Science and Plant Nutrition, 1998, 44(4): 507-512. DOI:10.1080/00380768.1998.10414474 |
[19] |
Yang S H, Xiao Y N, Sun X, et al. Biochar improved rice yield and mitigated CH4 and N2O emissions from paddy field under controlled irrigation in the Taihu Lake Region of China. Atmospheric Environment, 2019, 200: 69-77. DOI:10.1016/j.atmosenv.2018.12.003 |
[20] |
Shen J L, Tang H, Liu J Y, et al. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agriculture, Ecosystems & Environment, 2014, 188: 264-274. |
[21] |
Corton T M, Bajita J B, Grospe F S, et al. Methane emission from irrigated and intensively managed rice fields in central Luzon (Philippines). Nutrient Cycling in Agroecosystems, 2000, 58(1): 37-53. |
[22] |
Jiang Y, Groenigen K J, Huang S, et al. Higher yields and lower methane emissions with new rice cultivars. Global Change Biology, 2017, 23(11): 4728-4738. DOI:10.1111/gcb.13737 |
[23] |
Sun H F, Zhou S, Song X F, et al. CH4 emission in response to water-saving and drought-resistance rice (WDR) and common rice varieties under different irrigation managements. Water, Air, & Soil Pollution, 2016, 227(2): 47. |
[24] |
Harada H, Kobayashi H, Shindo H. Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: Life-cycle inventory analysis. Soil Science & Plant Nutrition, 2007, 53(5): 668-677. |
[25] |
Ahmad S, Li C F, Dai G Z, et al. Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil & Tillage Research, 2009, 106(1): 54-61. |
[26] |
Li D M, Liu M Q, Cheng Y H, et al. Methane emissions from double-rice cropping system under conventional and no tillage in southeast China. Soil & Tillage Research, 2011, 113(2): 77-81. DOI:10.3969/j.issn.1672-7428.2011.02.023 |
[27] |
Li C F, Zhang Z S, Guo L J, et al. Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods. Atmospheric Environment, 2013, 80: 438-444. DOI:10.1016/j.atmosenv.2013.08.027 |
[28] |
Zhang H L, Bai X L, Xue J F, et al. Emissions of CH4 and N2O under different tillage systems from double-cropped paddy fields in Southern China. PLoS One, 2013, 8(6): e65277. DOI:10.1371/journal.pone.0065277 |
[29] |
蔡祖聪. 中国稻田甲烷排放研究进展. 土壤, 1999, 31(5): 266-269. Cai Z C. Research progress of methane emission from rice fields in China. Soils, 1999, 31(5): 266-269. DOI:10.13758/j.cnki.tr.1999.05.007 (in Chinese) |
[30] |
康国定. 中国稻田甲烷排放时空变化特征研究. 南京: 南京大学, 2003. Kang G D. Study on Temporal and Spatial Variation Characteristics of Methane Emission from Rice Fields in China. Nanjing: Nanjing University, 2003. (in Chinese) |
[31] |
Zhang G B, Ma J, Yang Y T, et al. Achieving low methane and nitrous oxide emissions with high economic incomes in a ricebased cropping system. Agricultural and Forest Meteorology, 2018, 259: 95-106. DOI:10.1016/j.agrformet.2018.04.011 |
[32] |
Zhang W, Yu Y Q, Huang Y, et al. Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050. Global Change Biology, 2011, 17(12): 3511-3523. DOI:10.1111/j.1365-2486.2011.02495.x |
[33] |
Cai Z C, Tsuruta H, Minami K. Methane emission from rice fields in China: Measurements and influencing factors. Journal of Geophysical Research Atmospheres, 2000, 105(D13): 17231-17242. DOI:10.1029/2000JD900014 |
[34] |
Zhang G B, Yu H Y, Fan X F, et al. Drainage and tillage practices in the winter fallow season mitigate CH4 and N2O emissions from a double-rice field in China. Atmospheric Chemistry and Physics, 2016, 16(18): 11853-11866. DOI:10.5194/acp-16-11853-2016 |
[35] |
Li X L, Zhang G B, Xu H, et al. Effect of timing of joint application of hydroquinone and dicyandiamide on nitrous oxide emission from irrigated lowland rice paddy field. Chemosphere, 2009, 75(10): 1417-1422. DOI:10.1016/j.chemosphere.2009.02.006 |
[36] |
Li X L, Zhang X Y, Xu H, et al. Methane and nitrous oxide emissions from rice paddy soil as influenced by timing of application of hydroquinone and dicyandiamide. Nutrient Cycling in Agroecosystems, 2009, 85(1): 31-40. DOI:10.1007/s10705-008-9246-3 |
[37] |
Ji Y, Liu G, Ma J, et al. Effect of controlled-release fertilizer on mitigation of N2O emission from paddy field in South China: A multi-year field observation. Plant and Soil, 2013, 371(1-2): 473-486. DOI:10.1007/s11104-013-1700-6 |
[38] |
Ji Y, Liu G, Ma J, et al. Effects of urea and controlled release urea fertilizers on methane emission from paddy fields: A multi-year field study. Pedosphere, 2014, 24(5): 662-673. DOI:10.1016/S1002-0160(14)60052-7 |
[39] |
Xia L L, Xia Y Q, Li B L, et al. Integrating agronomic practices to reduce greenhouse gas emissions while increasing the economic return in a rice-based cropping system. Agriculture, Ecosystems & Environment, 2016, 231: 24-33. |
[40] |
Hang X N, Zhang X, Song C L, et al. Differences in rice yield and CH4 and N2O emissions among mechanical planting methods with straw incorporation in Jianghuai area, China. Soil and Tillage Research, 2014, 144: 205-210. DOI:10.1016/j.still.2014.07.013 |
[41] |
张卫建, 严圣吉, 张俊, 等. 国家粮食安全与农业双碳目标的双赢策略. 中国农业科学, 2021, 54(18): 3892-3902. Zhang W J, Yan S J, Zhang J, et al. Win-win strategy for national food security and agricultural double-carbon goals. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902. DOI:10.3864/j.issn.0578-1752.2021.18.009 (in Chinese) |
[42] |
巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20(4): 783-795. Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese) |
[43] |
巨晓棠, 张翀. 论合理施氮的原则和指标. 土壤学报, 2021, 58(1): 1-13. Ju X T, Zhang C. The principles and indicators of rational N fertilization. Acta Pedologica Sinica, 2021, 58(1): 1-13. (in Chinese) |
[44] |
李玥, 巨晓棠. 农田氧化亚氮减排的关键是合理施氮. 农业环境科学学报, 2020, 39(4): 842-851. Li Y, Ju X T. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission. Journal of AgroEnvironment Science, 2020, 39(4): 842-851. (in Chinese) |
[45] |
Zhang F S, Cui Z L, Chen X P, et al. Integrated nutrient management for food security and environmental quality in China. Advances in Agronomy, 2012, 116: 1-40. |
[46] |
夏龙龙, 颜晓元, 蔡祖聪. 我国农田土壤温室气体减排和有机碳固定的研究进展及展望. 农业环境科学学报, 2020, 39(4): 834-841. Xia L L, Yan X Y, Cai Z C. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China. Journal of Agro-Environment Science, 2020, 39(4): 834-841. (in Chinese) |
[47] |
Xia L L, Lam S K, Chen D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biology, 2017, 23(5): 1917-1925. DOI:10.1111/gcb.13455 |
[48] |
Yao Z S, Zheng X H, Zhang Y N, et al. Urea deep placement reduces yield-scaled greenhouse gas (CH4 and N2O) and NO emissions from a ground cover rice production system. Scientific Reports, 2017, 7: 11415. DOI:10.1038/s41598-017-11772-2 |
[49] |
李鑫, 巨晓棠, 张丽娟, 等. 不同施肥方式对土壤氨挥发和氧化亚氮排放的影响. 应用生态学报, 2008, 19(1): 99-104. Li X, Ju X T, Zhang L J, et al. Effects of different fertilization modes on soil ammonia volatilization and nitrous oxide emission. Chinese Journal of Applied Ecology, 2008, 19(1): 99-104. (in Chinese) |
[50] |
Abao E B, Bronson K F, Wassmann R, et al. Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rainfed conditions. Nutrient Cycling in Agroecosystems, 2000, 58(1-3): 131-139. |
[51] |
Guo C, Ren T, Li P F, et al. Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea. Environmental Science and Pollution Research International, 2019, 26(3): 2569-2579. DOI:10.1007/s11356-018-3792-2 |
[52] |
Boeckx P, Xu X, Cleemput O. Mitigation of N2O and CH4 emission from rice and wheat cropping systems using dicyandiamide and hydroquinone. Nutrient Cycling in Agroecosystems, 2005, 72(1): 41-49. DOI:10.1007/s10705-004-7352-4 |
[53] |
Jiang J Y, Jiang S S, Xu J Y, et al. Lowering nitrogen inputs and optimizing fertilizer types can reduce direct and indirect greenhouse gas emissions from rice-wheat rotation systems. European Journal of Soil Biology, 2020, 97: 103152. DOI:10.1016/j.ejsobi.2020.103152 |
[54] |
Malla G, Bhatia A, Pathak H, et al. Mitigating nitrous oxide and methane emissions from soil in rice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere, 2005, 58(2): 141-147. DOI:10.1016/j.chemosphere.2004.09.003 |
[55] |
Qiao C L, Liu L L, Hu S J, et al. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global Change Biology, 2015, 21(3): 1249-1257. DOI:10.1111/gcb.12802 |
[56] |
Cayuela M L, Oenema O, Kuikman P J, et al. Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions. GCB Bioenergy, 2010, 2(4): 201-213. |
[57] |
Zhang L, Zheng J C, Chen L G, et al. Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice-wheat cropping system. European Journal of Agronomy, 2015, 63: 47-54. DOI:10.1016/j.eja.2014.11.005 |
[58] |
牛东, 潘慧, 丛美娟, 等. 氮肥运筹和秸秆还田对麦季土壤温室气体排放的影响. 麦类作物学报, 2016, 36(12): 1667-1673. Niu D, Pan H, Cong M J, et al. Effect of nitrogen application ratio and straw returning on soil greenhouse gas emission during wheat growing period. Journal of Triticeae Crops, 2016, 36(12): 1667-1673. DOI:10.7606/j.issn.1009-1041.2016.12.17 (in Chinese) |
[59] |
高春雨, 邱建军, 王立刚. 农田N2O排放影响因素及减排措施. 安徽农业科学, 2011, 39(4): 2132-2134. Gao C Y, Qiu J J, Wang L G. The study of influencing factors and mitigation strategies for N2O emission from croplands. Journal of Anhui Agricultural Sciences, 2011, 39(4): 2132-2134. DOI:10.3969/j.issn.0517-6611.2011.04.091 (in Chinese) |
[60] |
Shin Y K, Yun S H, Park M E, et al. Mitigation options for methane emission from rice fields in Korea. Ambio, 1996, 25(4): 289-291. |
[61] |
Cai Z C, Xu H, Zhang H H, et al. Estimate of methane emission from rice paddy fields in Taihu Region, China. Pedosphere, 1994, 4(4): 297-306. |
[62] |
Shoji S, Delgado J, Mosier A, et al. Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Communications in Soil Science and Plant Analysis, 2001, 32(7-8): 1051-1070. DOI:10.1081/CSS-100104103 |
[63] |
王明星. 中国稻田甲烷排放. 北京: 科学出版社, 2001. Wang M X. Methane Emission from Rice Fields in China. Beijing: Science Press, 2001. (in Chinese) |
[64] |
Zhang G B, Huang Q, Song K F, et al. Responses of greenhouse gas emissions and soil carbon and nitrogen sequestration to field management in the winter season: A 6-year measurement in a Chinese double-rice field. Agriculture, Ecosystems & Environment, 2021, 318: 107506. |
[65] |
Lee J G, Cho S R, Jeong S T, et al. Different response of plastic film mulching on greenhouse gas intensity (GHGI) between chemical and organic fertilization in maize upland soil. Science of the Total Environment, 2019, 696: 133827. DOI:10.1016/j.scitotenv.2019.133827 |
[66] |
Yang B, Xiong Z Q, Wang J Y, et al. Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice-wheat annual rotation systems in China: A 3-year field experiment. Ecological Engineering, 2015, 81: 289-297. DOI:10.1016/j.ecoleng.2015.04.071 |
[67] |
Zhang M, Li B, Xiong Z Q. Effects of organic fertilizer on net global warming potential under an intensively managed vegetable field in southeastern China: A three-year field study. Atmospheric Environment, 2016, 145: 92-103. DOI:10.1016/j.atmosenv.2016.09.024 |
[68] |
Qin Y M, Liu S W, Guo Y Q, et al. Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biology and Fertility of Soils, 2010, 46(8): 825-834. DOI:10.1007/s00374-010-0493-5 |
[69] |
Mosier A R, Halvorson A D, Reule C A, et al. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. Journal of Environmental Quality, 2006, 35(4): 1584-1598. DOI:10.2134/jeq2005.0232 |
[70] |
李建政, 王迎春, 王立刚, 等. 农田生态系统温室气体减排技术评价指标. 应用生态学报, 2015, 26(1): 297-303. Li J Z, Wang Y C, Wang L G, et al. Evaluation indices of greenhouse gas mitigation technologies in cropland ecosystem. Chinese Journal of Applied Ecology, 2015, 26(1): 297-303. (in Chinese) |
[71] |
王明星, Khalil M A K, Rasmussen R A. 稻田和沼气池甲烷排放通量的测量. 科学通报, 1987, 32(21): 1646-1649. Wang M X, Khalil M A K, Rasmussen R. Measurement of methane emission flux from rice fields and biogas digesters. Chinese Science Bulletin, 1987, 32(21): 1646-1649. (in Chinese) |
[72] |
Khalil M A K, Rasmussen R A, Wang M X, et al. Methane emissions from rice fields in China. Environmental Science & Technology, 1991, 25(5): 979-981. |
[73] |
Wassmann R, Schütz H, Papen H, et al. Quantification of methane emissions from Chinese rice fields (Zhejiang Province) as influenced by fertilizer treatment. Biogeochemistry, 1993, 20(2): 83-101. DOI:10.1007/BF00004136 |
[74] |
Yan X Y, Cai Z C, Ohara T, et al. Methane emission from rice fields in mainland China: Amount and seasonal and spatial distribution. Journal of Geophysical Research, 2003, 108(D16): 4505. DOI:10.1029/2002JD003182 |
[75] |
傅志强, 黄璜, 谢伟, 等. 高产水稻品种及种植方式对稻田甲烷排放的影响. 应用生态学报, 2009, 20(12): 3003-3008. Fu Z Q, Huang H, Xie W, et al. Effects of high-yielding rice cultivar and cultivation pattern on methane emission from paddy field. Chinese Journal of Applied Ecology, 2009, 20(12): 3003-3008. (in Chinese) |
[76] |
马二登, 纪洋, 马静, 等. 耕种方式对稻田甲烷排放的影响. 生态与农村环境学报, 2010, 26(6): 513-518. Ma E D, Ji Y, Ma J, et al. Effects of soil tillage and rice cultivation pattern on methane emission from paddy field. Journal of Ecology and Rural Environment, 2010, 26(6): 513-518. (in Chinese) |
[77] |
彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014, 44(8): 845-850. Peng S B. Reflection on China's rice production strategies during the transition period. Scientia Sinica (Vitae), 2014, 44(8): 845-850. (in Chinese) |
[78] |
沈益平. 发达国家低碳农业立法实践及借鉴. 世界农业, 2016, (9): 114-118. Shen Y P. Legislative practice and reference of low carbon agriculture in developed countries. World Agriculture, 2016, (9): 114-118. (in Chinese) |
[79] |
王宏. 美国低碳农业法律制度对中国的启示. 世界农业, 2018, (2): 73-78. Wang H. Enlightenment of American low carbon agricultural legal system to China. World Agriculture, 2018, (2): 73-78. (in Chinese) |
[80] |
房世波, 冯凌, 刘华杰, 等. 生物土壤结皮对全球气候变化的响应. 生态学报, 2008, 28(7): 3312-3321. Fang S B, Feng L, Liu H J, et al. Responses of biological soil crusts (BSC) from arid-semiarid habitats and polar region to global climate change. Acta Ecologica Sinica, 2008, 28(7): 3312-3321. (in Chinese) |
[81] |
王天佑, 夏品华, 林陶, 等. 贵州草海湿地不同生境周丛生物碳、氮、磷生态化学计量学. 湖泊科学, 2021, 33(3): 774-784. Wang T Y, Xia P H, Lin T, et al. Ecological stoichiometry of carbon, nitrogen, and phosphorus of periphyton in different habitats of Caohai Wetland, Guizhou Province. Journal of Lake Sciences, 2021, 33(3): 774-784. (in Chinese) |
[82] |
Xu H K, Zhang Y J, Shao X Q, et al. Soil nitrogen and climate drive the positive effect of biological soil crusts on soil organic carbon sequestration in drylands: A Meta-analysis. Science of the Total Environment, 2022, 803: 150030. |
[83] |
Chen X P, Cui Z L, Fan M S, et al. Producing more grain with lower environmental costs. Nature, 2014, 514: 486-489. |
[84] |
贺大州. 低碳农业发展的美国经验和对中国的启示. 世界农业, 2015, (6): 150-154. He D Z. American experience in the development of low carbon agriculture and Its Enlightenment to China. World Agriculture, 2015, (6): 150-154. (in Chinese) |
[85] |
许红. 国外低碳农业发展经验及借鉴. 农业经济, 2019, 4: 9-11. Xu H. Foreign low carbon agriculture development experience and reference. Agricultural Economy, 2019, 4(4): 9-11. (in Chinese) |
[86] |
杨筠桦. 欧洲低碳农业发展政策的实践经验及对中国的启示. 世界农业, 2018, (2): 67-72. Yang Y H. The practical experience of European low carbon agricultural development policy and Its Enlightenment to China. World Agriculture, 2018, (2): 67-72. (in Chinese) |