登录窗口
作者登录 审稿登录 编辑登录 读者登录
订阅 | 旧版入口 | English
 
  • 首页
  • 期刊简介
  • 编委会
  • 作者投稿
  • 订阅指南
  • 联系我们
  • 过刊目录
###
DOI:10.16418/j.issn.1000-3045.2016.07.008
中国科学院院刊:2016,31(7):793-802
查看/发表评论     过刊浏览    高级检索     HTML
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
下载全文
类脑智能研究现状与发展思考
徐波1,2, 刘成林1,2, 曾毅1,2
(1.中国科学院自动化研究所 北京 100190;2.中国科学院脑科学与智能技术卓越创新中心 上海 200031)
Research Status and Developments of Brain-inspired Intelligence
Xu Bo1,2, Liu Chenglin1,2, Zeng Yi1,2
(1.Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;2.Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 6642次   下载 7380次
    修订日期:2016-06-09
中文摘要: 近年来人工智能研究的许多重要进展反映了一个趋势:来自脑科学的启发,即使是局部的借鉴都能够有效地提升现有人工智能模型与系统的智能水平。然而,想要真正逼近乃至超越人类水平的人工智能,还需要对脑信息处理机制更为深入的研究和借鉴。类脑智能研究的目标就是通过借鉴脑神经结构及信息处理机制,实现机制类脑、行为类人的下一代人工智能系统。文章从受脑启发的新一代人工神经网络、基于记忆、注意和推理的认知功能模型、基于生物脉冲神经网络的多脑区协同认知计算模型等角度,并结合研究团队在类脑智能领域的研究进展,论述类脑智能的研究进展、发展方向和对未来发展的思考。
中文关键词: 类脑智能  人工神经网络  记忆  注意和推理  脉冲神经网络  多脑区协同  自主学习
Abstract:Recent advances in Artificial Intelligence (AI) have manifested an important trend, namely, inspirations from brain science can significantly improve the level of intelligence for AI computational models. With only local and partial inspirations from the brain, great advancements have been achieved. Nevertheless, deeper investigations and inspirations from the brain are needed to realize and exceed humanlevel intelligence. The ultimate goal of brain-inspired intelligence is to bring inspirations from brain structures and information processing mechanisms to brain-inspired cognitive computational models, so as to realize next-generation artificial intelligence models and systems with general intelligence. In this article, we review recent advances and discuss trends of brain-inspired computational models, including new models of artificial neural networks, and cognitive computation models. We also briefly introduce the research of brain-inspired cognitive computation models and methods supported by the strategic priority research project of Chinese Academy of Sciences.
keywords: brain-inspired intelligence  artificial neural networks  memory  attention and reasoning  spiking neural networks  multiple brain region coordination  autonomous learning
文章编号:     中图分类号:    文献标志码:
基金项目:中科院战略性先导科技专项项目(B类)(XDB0200000)
作者单位
徐波 中国科学院自动化研究所 北京 100190
中国科学院脑科学与智能技术卓越创新中心 上海 200031 
刘成林 中国科学院自动化研究所 北京 100190
中国科学院脑科学与智能技术卓越创新中心 上海 200031 
曾毅 中国科学院自动化研究所 北京 100190
中国科学院脑科学与智能技术卓越创新中心 上海 200031 
Author NameAffiliation
Xu Bo Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China 
Liu Chenglin Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China 
Zeng Yi Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China 
引用文本:
徐波,刘成林,曾毅.类脑智能研究现状与发展思考[J].中国科学院院刊,2016,31(7):793-802.
Xu Bo,Liu Chenglin,Zeng Yi.Research Status and Developments of Brain-inspired Intelligence[J].Bulletin of Chinese Academy of Sciences,2016,31(7):793-802.
 
 
您是第37209091位访问者!
1996-2021 中国科学院版本所有 备案序号: 京ICP备05002857
地址:北京三里河路52号 邮编 100864 Email:bulletin@cashq.ac.cn
技术支持:北京勤云科技发展有限公司