登录窗口
作者登录 审稿登录 编辑登录 读者登录
订阅 | 旧版入口 | English
 
  • 首页
  • 期刊简介
  • 编委会
  • 作者投稿
  • 订阅指南
  • 联系我们
  • 过刊目录
###
DOI:10.16418/j.issn.1000-3045.2019.11.012
中国科学院院刊:2019,34(11):1293-1305
查看/发表评论     过刊浏览    高级检索     HTML
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
下载全文
青藏高原能量、水分循环影响效应
徐祥德1, 马耀明2, 孙婵1, 魏凤英1
(1.中国气象科学研究院灾害天气国家重点实验室 北京 100081;2.中国科学院青藏高原研究所 北京 100101)
Effect of Energy and Water Circulation over Tibetan Plateau
XU Xiangde1, MA Yaoming2, SUN Chan1, WEI Fengying1
(1.State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;2.Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 3093次   下载 4583次
投稿时间:2019-10-15    
中文摘要: 青藏高原是世界上总辐射量最高的地区,也是全球超太阳常数的极值区域之一。此处形成了一个"嵌入"对流层中部大气的巨大的热源,可以伸展到自由大气,其超越了世界上任何超级城市群落所产生的中空热岛效应,对全球与区域大气环流系统变化的动力"驱动"产生了难以估计的效应。与地形热力过程季节变化密切相关的亚洲夏季风是世界上范围最广和强度最强的季风;从冬季到早春季节转换过程中,由于太阳辐射的影响造成青藏高原大地形感热的"快速响应"及其相对高值动态移动,在盛夏梅雨及其云降水带前沿线恰好停滞于中国"三阶梯"地形分布山地-平原过渡区。此现象表明,青藏高原可能扮演着夏季风过程陆地-海洋-大气相互作用的关键角色。中国区域低云量与总云量极值区均与青藏高原大江大河的源头(长江、澜沧江、雅鲁藏布江等)、中东部湖泊群与冰川集中区空间分布几乎吻合,这表明"亚洲水塔"形成的关键因素与"世界屋脊"特有的云降水结构不可分割。研究表明,青藏高原大气热源对局地与下游区域云降水过程水汽输送流型等均有显著影响。长江流域降水与全国低云量存在一个明显沿长江流域的带状高相关结构,充分表明长江流域降水与上游"亚洲水塔""热驱动"以及对流系统具有重要相关关系。从跨赤道经向环流的视角可发现,夏季南、北半球跨赤道气流低层强偏南、高层强偏北气流出现在东亚地区和北美区域两大地形对应的赤道区,这2个跨赤道极值区恰与青藏高原、落基山高原位置相对应。青藏高原纬向与经向环流圈结构与区域-全球大气环流相关机制,印证了"世界屋脊"隆起大地形的"热驱动"及其对流活动在全球能量、水分循环的作用。青藏高原特殊水汽三维结构分布和跨半球的纬向和经向大气垂直环流图表明青藏高原对全球尺度大气环流变化的贡献显著。文章进一步以东亚、全球水循环的视角,提出了青藏高原作为全球性大气"水塔"的观念,认为在高原地区一个水塔的"供水"和"蓄水"循环体系,特别是高原地表冰川、积雪和湖泊作为"蓄水池"系统,使得所有的河流可作为"输水管道",将"水塔"的水向周边区域输送出去,高层大气也提供向外输送的渠道。青藏高原特殊的跨半球大气水分循环可构建"世界水塔"与其周边地区独特的水文功能概念,综合描绘了青藏高原"世界水塔"及其地球上一个完整的行星尺度陆地-海洋-大气水分循环物理图像。
中文关键词: 青藏高原  亚洲水塔  大气水分循环  热驱动  机制  物理图像
Abstract:The total amount of radiation over the Tibetan Plateau (TP) is the largest in the world with an extreme area of super solar constant, where a huge heat source "embedded" in the middle troposphere forms a hollow heat island with the effect exceeding any urban agglomerations in the world and an inestimable driving impact on global and regional changes in atmospheric circulation system. In closely association with the seasonal variations of TP's thermal forcing, the Asian summer monsoon is the most widely in the world with the strongest monsoon intensity. The seasonal changes of solar radiation results in a "rapid response" of sensible heat and its dynamic movement over the TP's large terrain. The advancing cold-rainfall belts of East Asian summer monsoon stop just along the mountain-plain boundary area in China's three ladder terrain distribution, indicating that the TP may play key role in summer monsoon process of air-sea-land interactions. The extreme regions of low cloud cover and total cloud cover over China, the sources of large rivers (Yangtze River, Lancang River, Yarlung Zangbo River, etc.) in the TP and the group of lakes and rivers in central-eastern China are spatially almost consistent, reflecting that an inseparable connection of the formation of "Asian Water Tower" and the unique cloud precipitation structure in the TP. The studies revealed that a significant influence of the TP's atmospheric heat source on the cloudprecipitation and water vapor transport pattern in local and downstream areas. The precipitation in the Yangtze River Reaches has an obvious zonal high correlation structure with the low cloud cover over China, the precipitation in the Yangtze River Reaches has an important relation with the thermal divers of upper TP's Asian Water Tower, and convection system. From the perspective of acrossequatorial circulations, it is found that the summertime cross-equatorial lower south and upper-north flows between the northern to southern hemispheric atmosphere appears just in the Asian and the North American regions with the TP and the Rocky Mountains. The TP's zonal and meridional circulation structure and the relevant mechanism of regional and global atmospheric circulation confirm the thermal role of the TP's "roof of the world" and the convection activities in global energy and water circles. The three-dimensional distribution of special water vapor on the TP and the vertical circulation of atmosphere across the hemispheres show that the TP contributes significantly to the change of global atmospheric circulation. A global Water Tower concept in the TP's atmosphere was put forward, and it is believed that the "water supply" and "water storage" system of TP's water tower is built with the "water storage tank" system of the plateau surface glaciers, snow cover and lakes, as well as "water supply pipelines" of rivers transporting water from the water tower to the downstream areas, and the upper atmosphere also provides the channels for outward transport of water vapor from the TP. The TP's special atmospheric water circulation across the hemisphere can establish "water tower of the world" and its surrounding areas the unique hydrological function, which could provide a comprehensive description of physical picture about the TP's "water tower of the world" and the land-sea-air water vapor circulation in global scale.
keywords: Tibetan Plateau (TP)  Asian Water Tower  atmospheric water vapor cycle  thermal forcing  mechanism  physical picture
文章编号:     中图分类号:    文献标志码:
基金项目:
作者单位
徐祥德 中国气象科学研究院灾害天气国家重点实验室 北京 100081 
马耀明 中国科学院青藏高原研究所 北京 100101 
孙婵 中国气象科学研究院灾害天气国家重点实验室 北京 100081 
魏凤英 中国气象科学研究院灾害天气国家重点实验室 北京 100081 
Author NameAffiliation
XU Xiangde State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China 
MA Yaoming Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China 
SUN Chan State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China 
WEI Fengying State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China 
引用文本:
徐祥德,马耀明,孙婵,魏凤英.青藏高原能量、水分循环影响效应[J].中国科学院院刊,2019,34(11):1293-1305.
XU Xiangde,MA Yaoming,SUN Chan,WEI Fengying.Effect of Energy and Water Circulation over Tibetan Plateau[J].Bulletin of Chinese Academy of Sciences,2019,34(11):1293-1305.
 
 
您是第35098761位访问者!
1996-2021 中国科学院版本所有 备案序号: 京ICP备05002857
地址:北京三里河路52号 邮编 100864 Email:bulletin@cashq.ac.cn
技术支持:北京勤云科技发展有限公司