登录窗口
作者登录 审稿登录 编辑登录 读者登录
订阅 | 旧版入口 | English
 
  • 首页
  • 期刊简介
  • 编委会
  • 作者投稿
  • 订阅指南
  • 联系我们
  • 过刊目录
###
DOI:10.16418/j.issn.1000-3045.20240814004
中国科学院院刊:2024,39(9):1631-1638
查看/发表评论     过刊浏览    高级检索     HTML
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
下载全文
大模型发展趋势及腾讯公司自主创新实践
司晓
(腾讯研究院 深圳 518054)
Development trends of large models and Tencent’s independent innovation practice
SI Jason
(Tencent Research Institute, Shenzhen 518054, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 721次   下载 783次
    修订日期:2024-08-30
中文摘要: 文章探讨了大模型发展趋势和应用前景,以腾讯混元大模型为例,重点剖析了国内大模型的自主创新和落地实践。当前,国际上谷歌、Meta、OpenAI等公司纷纷推出更强大的模型,如美国谷歌公司的Gemini和美国Meta公司的Llama 3,这些模型在多模态应用和推理能力上取得了显著进展。国内大模型通过采用MoE(混合专家模型)架构,显著提升了模型性能和效率。腾讯公司在大模型技术上取得了突破性进展,其自研的MoE万亿参数大模型、Angel机器学习平台等,推动腾讯混元在多模态应用中表现优异,并推出了一站式AI智能体创作与分发平台腾讯元器。行业大模型成为人工智能+战略落地的关键,腾讯公司积极助力大模型在零售、教育、金融、医疗、传媒、交通、政务等领域的应用,推动各行业提质增效。
中文关键词: 多模态  腾讯混元大模型  深度学习框架
Abstract:The article discusses the emerging trends and application prospects of current large models, using Tencent’s Hunyuan large model as an example. It focuses mainly on innovations and implementations of large models in China. Companies like Google, Meta, and OpenAI have launched powerful models such as Google’s Gemini and Meta’s Llama 3, which have made significant progress in multi-modal applications and reasoning capabilities. China’s large models have significantly improved performance and efficiency by adopting the MoE (Mixture of Experts) architecture. Specifically, with its self-developed MoE trillion-parameter large model and deep learning framework, Tencent has made breakthrough advancements in large model technology and achieved exceptional performance in muti-modal applications. Moreover, Tencent has launched a one-stop AI agent creation and distribution platform. Tencent understands that industry-wide, large models are key to implementing AI and strategies, and is actively supporting the application of large models across sectors such as retail, education, finance, healthcare, media, transportation, and government, helping these industries enhance quality and efficiency.
keywords: multimodal  Hunyuan large model  deep learning framework
文章编号:     中图分类号:    文献标志码:
基金项目:
作者单位
司晓 腾讯研究院 深圳 518054 
Author NameAffiliation
SI Jason Tencent Research Institute, Shenzhen 518054, China 
引用文本:
司晓.大模型发展趋势及腾讯公司自主创新实践[J].中国科学院院刊,2024,39(9):1631-1638.
SI Jason.Development trends of large models and Tencent’s independent innovation practice[J].Bulletin of Chinese Academy of Sciences,2024,39(9):1631-1638.
 
 
您是第37220339位访问者!
1996-2021 中国科学院版本所有 备案序号: 京ICP备05002857
地址:北京三里河路52号 邮编 100864 Email:bulletin@cashq.ac.cn
技术支持:北京勤云科技发展有限公司